OffshoreDC ,1st Workshop, Statnett, 17 October 2011

Security of Supply and
Meshed HVDC grids

Kjetil Uhlen, Temesgen Haileselassie
NOWITECH,
Electric Power Engineering, NTNU

MW|TECH Norwegian Research Centre for Offshore Wind Technology



Outline

Conclusions (Hypothesis)

Potential of meshed HVDC grids

Power system operation and control — and security
Control schemes for multi-terminal HVDC

Examples (illustrating security aspects related to
operation and control)

Further challenges (technical, operational, regulatory)

NOW|TECH Norwegian Research Centre for Offshore Wind Technology




Conclusions / Hypothesis

A meshed HVDC grid has the potential to improve
security of supply!

A multi-terminal HVDC grid in the North Sea can
effectively integrate the synchronous interconnections
(UK, UCTE and Nordic)

Can be operated as ONE control area (if desirable)

Reserves (primary and secondary) can be shared
without “technical constraints”

Fast control and protection will enable network splitting
to avoid risk of cascading outages and complete
blackouts

Fully integrate the power markets across the
asynchronous areas.




Outline

o Potential of meshed HVDC grids
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Outline

 Power system operation and control — and security
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Power system security

= Security standards: Deterministic (N-1) or risk based

= Ability to manage contingencies / outages:
» Avallability of reserves
» Avallability of transmission capacity

» Stability and control




Control stages in power system
operation

Frequency [HZz]

Reserves afctivated [MW]

- Secondafry
RAF Primary :

0.0

1 min. 15 min.

System frequency response: R = % [MW/HZ]




Main challenges in operation and
control

* Primary control:

» Less primary reserves if new generation provide less
frequency response

e Secondary control:

» More need for secondary reserves with more variable
generation

o Tertiary control:

» Benefits with larger control areas and exchange of
reserves.

» New possibilities with an offshore Multi-terminal
HVDC grid!




Outline

e Control schemes for multi-terminal HVDC
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Active Power Control in MTDC —
Objectives:

Each converter should independently control:

e active power flow
— as given by the power reference (set point)

» dc bus voltage of the converter
— to manage the power balance within the DC grid

Controls should also:
* Dbe robust to contingencies

« contribute to the balance of the ac grids
— contribute to the primary frequency droop control




Power balance control in AC grids:

raditionally by frequency (speed) droop

f f f

Pgen1 ~>Pgen2
Generation Generation

AQgQgregate
station-1 station-2 JIreY




Power flow control in DC grid :

achieved by DC voltage droop
Ubc Ubc Ubc

‘ UDC,max

UDC min

Inverter Rectifier
mode mode

~ P1 P2
VSC-HVDC VSC-HVDC

AQggregate
station-1 station-2 Jgres

» No need for communication between terminals
» Many converter terminals contribute to dc voltage regulation

» DC analogy to distributed frequency droop control in AC
systems




HVDC converter control implementation

HVDC transmission

AC grid system

]
Lo @5

load

S

P : (7 o {__?j—_

f.
+ ref
P,

Frequency

HVDC terminals can participate | droop control
In frequency control. ;

Enables exchange of primary
reserves between asynchronous
AC grids
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o Examples (illustrating security aspects related to
operation and control)
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Simulation example
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Primary and secondary controls of MTDC system

Loss of 1GW generation unitin AC grid-2
MTDC contributes to frequency support

Secondary control activated by changing converter power
references to compensate for power flow deviations
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* Further challenges (technical, operational, regulatory)
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Further challenges

Technical:
DC circuit breakers
Protection (selectivity)
Converters and Cables
Standardisation (different vendors)
Operational:
— Who controls what and when?
— Coordination and collaboration
— Market design
 Regulatory
— Harmonisation of security standards and grid codes
— (Harmonisation of market rules and incentive schemes)
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Contingency analysis

Response to normal wind power variations
Outage of DC line in the offshore grid
Outage of offshore wind farm

Outage in one of the ac grids
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Simulation studies with 6-terminal DC grid system

All cable resistances: r=0.01 £2/km
All cable capacitances:c=25 pF/km
Bipolar DC transmission for all cases

P, =450 MW
‘ p[)(",f:ﬂ. 04

UK ' 1=300 km

P =800 MW
Ppc>=0.04

Offshore load
(Oil/gas platform)

P.s"=250 MW
Constant Power
terminal

P."=1000 MW
,0;)("4:0. 04
Nordic Area

—()

Central Europe

—()

P.;"=750 MW
Constant Power
terminal

P." =600 MW
Offshore windfarm

Offshore windfarm




Variations of DC voltage with fluctuating wind power

DC Bus-1
DC Bus-2

e DC Bus-4
DC Bus-5

DC Bus voltage (kV)

Wind power generation
(connected to DC bus-6)

Power (MW)

-500 I I I I I I
10 20 30 40 50 60 70
Time (s)

\oltage change is largest at the DC bus where
power flow change first occurs




Use of DC voltage droop control for balancing power variations
from the wind farm
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Outage of DC line 1-2

Line Power (MW)

Nodal Power (MW)

Terminal-1 continues to draw power via lines 1-3 and 1-4 when line
1-2 is disconnected. Small deviations in power flow occur due to

unequal DC voltage changes observed by DC droop controllers at
terminal 1, 2 and 4.




Outage of connection to windfarm
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Terminals 1, 2 and 4 compensate for lost power flow from
offshore wind farm.




Grid frequency support by meshed DC grid
(Outage of 10% of generation in AC grid-2)
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DC bus voltages show similar changes as AC grid frequencies.
Acrtificial frequency coupling between asynchronous AC grids.
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Comparison of grid responses: with and
without frequency support from DC grid
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Frequency response improves with frequency control support
from DC grid.




Concluding remarks

MTDC has the potential to fully integrate power
markets between asynchronous areas.

Can be operated in a similar manner as ac grids.

With the dc voltage droop control, no need of fast
communication between converter terminals.

Primary reserves can Dbe traded between
asynchronous areas (with frequency droop on the
converter)

» Sufficient reserves, fast control and protection are
key to ensure security of supply!
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