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Conclusions / Hypothesis 
• A meshed HVDC grid has the potential to improve 

security of supply! 
• A multi-terminal HVDC grid in the North Sea can 

effectively integrate the synchronous interconnections 
(UK, UCTE and Nordic) 

• Can be operated as ONE control area (if desirable) 

• Reserves (primary and secondary) can be shared 
without “technical constraints” 

• Fast control and protection will enable network splitting 
to avoid  risk of cascading outages and complete 
blackouts 

• Fully integrate the power markets across the 
asynchronous areas. 
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Grid connection 
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Grid integration 
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Power market integration 
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Power system security 

 Security standards: Deterministic (N-1) or risk based 
 

 Ability to manage contingencies / outages:  

Availability of reserves 

Availability of transmission capacity  

Stability and control 
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Control stages in power system 
operation 
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Main challenges in operation and 
control 

• Primary control:  
Less primary reserves if new generation provide less 

frequency response 
• Secondary control: 
  More need for secondary reserves with more variable 

generation 
• Tertiary control:  
Benefits with larger control areas and exchange of 

reserves.  

 New possibilities with an offshore Multi-terminal 
HVDC grid! 
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Each converter should independently control: 
• active power flow  

– as given by the power reference (set point) 

• dc bus voltage of the converter 
– to manage the power balance within the DC grid 

Controls should also: 
• be robust to contingencies 
• contribute to the balance of the ac grids 

– contribute to the primary frequency droop control 

Active Power Control in MTDC – 
Objectives: 
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Power balance control in AC grids: 
Traditionally by frequency (speed) droop 
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VSC-HVDC 
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Power flow control in DC grid : 
achieved by DC voltage droop 

 No need for communication between terminals 
 Many converter terminals contribute to dc voltage regulation 
 DC analogy to distributed frequency droop control in AC 

systems 
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HVDC converter control implementation 

DC voltage 
droop control 

Frequency 
droop control HVDC terminals can participate 

in frequency control. 

Enables exchange of primary 
reserves between asynchronous 
AC grids 
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Simulation example 
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Primary and secondary controls of MTDC system 
• Loss of 1GW generation unit in AC grid-2 
• MTDC contributes to frequency support 
• Secondary control activated by changing converter power 

references to compensate for power flow deviations 
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Further challenges 
• Technical: 

– DC circuit breakers 
– Protection (selectivity) 
– Converters and Cables 
– Standardisation (different vendors) 

• Operational: 
– Who controls what and when? 
– Coordination and collaboration 
– Market design 

• Regulatory 
– Harmonisation of security standards and grid codes 
– (Harmonisation of market rules and incentive schemes) 
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Contingency analysis 
 

• Response to normal wind power variations 

• Outage of DC line in the offshore grid 

• Outage of offshore wind farm 

• Outage in one of the ac grids 
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Simulation studies with 6-terminal DC grid system 

UK 
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Variations of DC voltage with fluctuating wind power 
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Use of DC voltage droop control for balancing power variations 
from the wind farm 
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Outage of DC line 1-2 
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Outage of connection to windfarm 
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Grid frequency support by meshed DC grid 
(Outage of 10% of generation in AC grid-2) 
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DC bus voltages show similar changes as AC grid frequencies. 
Artificial frequency coupling between asynchronous AC grids. 
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Comparison of grid responses: with and 
without frequency support from DC grid 
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Concluding remarks 
• MTDC has the potential to fully integrate power 

markets between asynchronous areas. 

• Can be operated in a similar manner as ac grids.  

• With the dc voltage droop control, no need of fast 
communication between converter terminals. 

• Primary reserves can be traded between 
asynchronous areas (with frequency droop on the 
converter) 

 Sufficient reserves, fast control and protection are 
key to ensure security of supply!  
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